
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

CAIE Computer Science IGCSE
9 - Databases

Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Database terminology
A database is an organised and structured collection of data that can be easily stored,
searched, and updated. A table holds related data in rows and columns, like a spreadsheet.

Fields are specific data points (like name or price), records are complete sets of related
fields for a single entry (like one customer’s information), and validation is the process of
ensuring data within fields and records adheres to predefined rules to maintain data integrity.

Data types
There are many data types that can be used to store information within databases. Each
field will use a specific data type.

Data Type Description Possible use
cases

Example(s)

Text /
Alphanumeric

Stores letters, numbers, and
symbols, but not used for
calculations.

Storing names,
addresses and
emails.

"John
Smith",
"AB123"

Character Stores a single letter, digit, or symbol. Storing a sex field
('M' / 'F'), a single
exam grade ('A',
'B'), or a single
character code.

'A', '7',
'#'

Boolean Stores one of two values only:
TRUE/FALSE, which can be used to
mean Yes/No.

Representing
Yes/No answers
(e.g. “Subscribed
to newsletter?”)

TRUE,
FALSE

Integer Whole numbers only (positive or
negative), no decimal part.

Storing quantities
(e.g. stock levels,
number of tickets),
ages, or ID
numbers.

42, -7,
1500

Real Numbers that may include a
decimal/fractional part.

Storing values that
may include
decimals such as
weights or
measurements.

3.14, -0.5,
99.99

Date/Time Stores calendar dates and/or times in
a standard format.

Storing dates of
birth, booking
dates, order
timestamps, or
deadlines.

24/08/202
5, 14:35,
24/08/202
5 14:35

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Primary keys
A primary key is a field that provides a unique identifier for every record in a database table.
Primary keys are important because they help to ensure that every record is unique - this is
especially useful when linking several database tables together (although you don’t need to
know details about how this works).

To select a primary key, look for the field that uniquely identifies every record, and that it
wouldn’t make sense to have duplicated across records.

In this table, which stores flight information, FlightNo would be the most appropriate primary
key. This is because each record (flight) can be uniquely identified by its flight number, and
there’s no reason that multiple flights would ever have the same flight number.

Table: Flights

FlightNo PilotNo Destination

ESY8876 65587 Paphos

RYN4133 13584 Dublin

BRI1101 20547 Munich

ESY5655 65587 Edinburgh

BRI8989 20547 Athens

The PilotNo field wouldn't be appropriate as a primary key, because it wouldn’t necessarily
identify each flight individually if several flights have the same pilot. For example, the flights
to Munich and Athens are both flown by pilot 20547. Additionally, the destination couldn’t be
used as a unique identifier, since there’ll likely be more than one flight to each destination
over time.

If there isn’t a field that provides a unique identifier for every record, then it may be the case
that none of the records can be used as a primary key. In this case, a new field could be
added to uniquely identify each record, such as an ID number that relates to the record.

Structured Query Language (SQL)
SQL is a language used to search for, manage, and manipulate data in a relational
database.

The SELECT command
SELECT is used for retrieving data from a database table. Commands take the following
form:

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

SELECT <field> FROM <table> WHERE <condition> AND <condition> OR
<condition> ORDER BY <field> <ASCENDING/DESCENDING>

To select several fields, separate their names with commas. Note that you can use the AND
and OR keywords as many times as needed (if at all), to specify additional conditions that
must be met. The ORDER BY clause is optional. Let’s use the following table as an
example.

Table: Flights

FlightNo PilotNo Destination

ESY8876 13584 Glasgow

ESY1225 13584 Swansea

BRI1101 20547 Berlin

SELECT FlightNo FROM Flights WHERE Destination = 'Berlin'
>> BRI1101

SELECT FlightNo FROM Flights WHERE PilotNo = '13584' AND Destination
= 'Swansea'
>> ESY1225

SELECT FlightNo, Destination FROM Flights WHERE PilotNo = '13584'
AND Destination = 'Glasgow'
>> ESY8876, Glasgow

SELECT Destination FROM Flights WHERE PilotNo = '13584' ORDER BY
FlightNo DESCENDING
>> Glasgow
 Swansea

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Wildcards
Wildcards can be used in SQL commands to specify any possible value. For example, rather
than selecting a specific attribute in a SELECT command, a wildcard could be used to return
all attributes.

Table: Cars

Model Manufacturer Price Year Sold

Polo Volkswagen 4995 2010 TRUE

i10 Hyundai 5225 2013 FALSE

Fiesta Ford 3995 2009 TRUE

In SQL, wildcards are usually notated with an asterisk. For example, to select all details of a
Car from the above table with a price greater than £4000, we would write this command:

SELECT * FROM Cars WHERE Price > 4000
>> [Polo, Volkswagen, 4995, 2010, TRUE], [Hyundai, 5225, 2013,
FALSE]

The SUM and COUNT commands
SUM and COUNT are aggregate functions in SQL. They are used when you want to
calculate values across multiple rows in a database table.

●​ SUM adds up all the values in a numeric field.​

●​ COUNT counts the number of rows that meet a condition (or all rows if no condition
is given).

The commands take the following form:

SELECT SUM(<field>) FROM <table> WHERE <condition>

SELECT COUNT(<field>) FROM <table> WHERE <condition>

Like with SELECT, the WHERE clause is optional, and conditions can be joined using AND
and OR.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Let’s use the following table as an example.

Table: Tickets

TicketNo FlightNo Price

T001 ESY8876 85

T002 ESY8876 90

T003 ESY1225 70

T004 BRI1101 120

T005 BRI1101 130

Find the total cost of all tickets in the table:
SELECT SUM(Price) FROM Tickets
>> 495

To find the total cost of all tickets for flight BRI1101:
SELECT SUM(Price) FROM Tickets WHERE FlightNo = 'BRI1101'
>> 250

Count how many tickets are for flight ESY8876:
SELECT COUNT(TicketNo) FROM Tickets WHERE FlightNo = 'ESY8876'
>> 2

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

	Database terminology
	Data types
	Primary keys
	Structured Query Language (SQL)
	The SELECT command
	
	Wildcards
	The SUM and COUNT commands

